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Abstract

Many XML documents are being produced, but there are no agreed-upon standards formally
defining what it means for complying XML documents to have “good” properties. In this paper
we present a formal definition for a proposed canonical normal form for XML documents called
XNF . XNF guarantees that complying XML documents have maximally compact connectiv-
ity while simultaneously guaranteeing that the data in complying XML documents cannot be
redundant. Further, we present a conceptual-model-based methodology that automatically gen-
erates XNF-compliant DTDs and prove that the algorithms, which are part of the methodology,
produce DTDs to ensure that all complying XML documents satisfy the properties of XNF.

1 Introduction

Many DTDs (Document Type Definitions) for XML documents are being produced (e.g. see
[XML]), and soon many XML-Schema specifications [XML00] for XML documents will be pro-
duced. With the emergence of these documents, we should be asking the question, “What con-
stitutes a good DTD?”1 We argue that a “good” DTD should guarantee that all complying XML
documents are in an agreed-upon form that has two desirable properties: (1) the DTD should have
as few hierarchical trees as possible rooted just below the top-level node, and (2) at the same time,
the DTD should not allow any of these trees to have redundant data values in XML documents
that comply with the DTD. Intuitively, this should ensure that complying XML documents are

1Since we do not address issues beyond hierarchical structure in this document, we discuss the issues in terms of

DTDs rather than XML-Schemas. Further, since proposed specifications require XML-Schema to include full DTD

expressibility, we do so without loss of generality.
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compactly connected in as few hierarchies as possible while simultaneously ensuring that no data
value in any complying document can be removed without loss of information.

In this paper we formalize these ideas by defining XNF, a normal form for XML documents,2

and we present a way to generate DTDs that are guaranteed to be in XNF. We assume that the
DTDs produced are for XML documents representing some aspect of the real world—those for
which conceptual modeling makes sense.3 Under this assumption, we argue that to produce a
“good” DTD for an application A, we should first produce a conceptual-model instance for A and
then apply a transformation guaranteed to produce an XNF-compliant DTD.

Although we can guarantee XNF compliance, we cannot guarantee uniqueness. In general,
several “good” DTDs, correspond to any given conceptual-model instance. Selecting the best
depends on usage requirements and viewpoints that are “in the eye of the beholder.” Sometimes
these usage requirements or viewpoints should even cause the principles of XNF to be violated, but
most of the time XNF-compliance should be compatible with usage requirements and viewpoints.
Heuristic “rules of thumb” can go a long way toward resolving this problem of nonuniqueness and
can often produce results that are highly satisfactory. We believe, however, that the ultimate
resolution should be synergistic. Given heuristic rules and the principles of XNF, a system should
work with a user to derive a suitable application DTD. The system can automatically derive
reasonable XNF-compliant DTDs. The user may adjust, reject, or redo any of the generated
suggestions. The system can check the revisions and report any violations of XNF so that the user
is aware of the consequences of the revisions. Iterating until closure is reached, the user can further
revise the DTD, and the system can evaluate and provide feedback.

We are aware of only one other research effort that closely parallels our work—namely [BGH00].4

[BGH00] makes the same argument we make, namely (1) that graphical conceptual-modeling lan-
guages offer one of the best—if not the best—human-oriented way of describing an application, (2)
that a model instance should be transformed automatically into an XML DTD (or XML schema),
and (3) that the transformation should maximize connectivity among the XML components and
should minimize the redundancy in complying XML documents. The authors of [BGH00] use
Object Role Modeling [Hal99] as their conceptual model and give a set of twelve heuristics for
generating the “best” XML schema. What is missing is the guarantee that their transformation
achieves maximum connectivity and minimum redundancy. In this paper we use a more generic
conceptual model and a simpler set of heuristics to achieve similar results, but the main contribution
is the guarantee that complying XML documents satisfy the formal properties XNF.

2The idea of XNF is based on nested normal form as defined in [MEN96] and is also related to other similar nested

normal forms such as those surveyed in [Mok].
3The class of documents we are considering is certainly large, but also certainly not all-inclusive. We do not, for

example, consider text documents where the order of textual elements is important.
4Others, such as [BR00, CSF00], discuss a UML-to-XML transformations, but they do not investigate properties

of conceptual-model generated XML documents. Similarly, OMG’s XMI effort [XMI] also provides a way to represent

UML in XML, but the effort is devoid of XNF-like guarantees for XML documents.
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We present our contribution as follows. Section 2 provides motivating examples and foundation
definitions. Besides arguing that we can produce DTDs that yield only XNF-compliant XML
documents, we also provide examples to show that even for simple applications, it is easy to
produce (and thus nontrivial to avoid) DTDs that have redundancy and have more hierarchical
clusters than necessary. In Section 3 we present straightforward algorithms that guarantee the
properties of XNF for a large number of practical cases. We then show in Section 4, however,
that these straightforward algorithms depend on the given conceptual-model instance being in a
particular canonical form. Although many practical model instances are naturally specified in the
required canonical form, some are not. We therefore explain how to achieve this canonical form
Section 4. We then prove that for a given conceptual-model instance in the canonical form, the
algorithms in Section 3 yield XNF-compliant DTDs. In Sections 5 and 6 we generalize our approach
and give algorithms for producing XNF-compliant DTDs for a more-inclusive set of conceptual-
model instances. We conclude in Section 7 and present the status of our implementation.

2 Motivating Example

As a motivating example, consider the conceptual-model diagram in Figure 1(a). Although based
on [EKW92], the conceptual modeling approach we present here is generic. Users model the real
world by constraint-augmented hypergraphs, which we call CM hypergraphs (conceptual-model hy-
pergraphs). Vertices of CM hypergraphs are object sets denoted graphically as named rectangles.
The object set Hobby in Figure 1(a), for example, may denote the set {Chess, Hiking, Sailing}. In
the general conceptual model, edges have two or more connections to object sets, but we restrict
ourselves until Section 5 to edges with just two connections. Edges representing functional rela-
tionships have arrowheads on the range side. In Figure 1(a), a graduate student enrolls in only
one program (e.g. PhD, MS ) and has only one faculty-member advisor. A connection between an
object set and a relationship set may be optional or mandatory, denoted respectively by an “O” on
the edge near the connection or the absence of an “O.” A faculty member need not have hobbies
and need not have advisees, but must be in a department. The inclusion constraints, which for
Figure 1(a) are only simple referential integrity constraints, must all hold. For optional participa-
tion, the inclusion constraint allows a proper subset, but for mandatory participation, the subset
can never be proper. Later in the paper, a triangle with its apex connected to a generalization
object set and its base connected to one or more specialization object sets will denote an explicit
inclusion constraint—the objects in any specialization object set must be a subset of the objects in
the generalization object set.

An XML document has a hierarchical structure with a single root.5 The set of structures
immediately below the single root constitutes a forest of hierarchical trees. It is this forest of trees

5We do not concern ourselves with XML documents that have no DTD or XML documents rooted at a DTD

subelement.
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Grad
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(a) Sample Diagram
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Hobby

Faculty Member, Department

Hobby

(b) Sample Scheme Trees

Figure 1: Simple Faculty-Student-Hobbies Diagram and Scheme Trees

we wish to derive from a conceptual-model instance.

We abstractly represent each tree in this forest as a scheme tree.

Definition 1 Let U be a set of object sets. A scheme tree is recursively defined as follows:

1. If X is a nonempty multiset6 of object sets in U , then a tree T with only the root node that
contains the object sets in X is a scheme tree over X.

2. If X, X1, . . . , Xn are nonempty multisets of object sets in U , and T1, . . . , Tn are scheme
trees over X1, . . . , Xn respectively, then a tree T with the root node that contains the object
sets in X and the root nodes of the Ti’s, 1 ≤ i ≤ n, as the children of the root node of T is a
scheme tree over the union of the multisets X, X1, . . . , Xn. 2

Definition 2 A textual representation of a scheme tree T is recursively defined as follows:

1. If T has only the root node, then (L)* is a textual representation of T where L is a list of the
object sets contained in the root node of T .

2. If T has more than one node, then let T1, . . . , Tn, n ≥ 1, be the n subtrees of T such that
each of the root nodes of the Ti’s, 1 ≤ i ≤ n, is a child of the root node of T . If Li is a textual
representation of Ti, 1 ≤ i ≤ n, and L is a list of the object sets contained in the root node
of T , then (L, L1, . . . , Ln)* is a textual representation of T . 2

Example 1 The two scheme trees in Figure 1(b) cover the model instance in Figure 1(a). Textually
written, the scheme trees in Figure 1(b) are (Grad Student, Program, Faculty Member, (Hobby)*
)* and (Faculty Member, Department, (Hobby)* )*. 2

¿From a forest of scheme trees, we can derive a DTD for any model instance as follows.7 (1)
Select a name N for the root and generate <! DOCTY PE N [ <scheme trees><data elements>

6Multisets allow us to handle recursion and other multiple references to the same object set.
7There are several ways we can represent a scheme tree as a DTD (especially if we use XMI [XMI] or features such

as ATTLIST, ID, and IDREF). These, however, can be obtained by transforming the DTD itself. Thus, except to
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<!DOCTYPE University[

<!ELEMENT University (

(Grad Student, Program, Faculty Member,

(Hobby)* )*,

(Faculty Member 2, Department,

(Hobby 2)* )* )>

<!ELEMENT Grad Student (#PCDATA)>

<!ELEMENT Program (#PCDATA)>

<!ELEMENT Faculty Member (#PCDATA)>

<!ELEMENT Hobby (#PCDATA)>

<!ELEMENT Faculty Member 2 (#PCDATA)>

<!ELEMENT Department (#PCDATA)>

<!ELEMENT Hobby 2 (#PCDATA)>

]>

(a) Sample DTD Specification

<University>

<Grad Student>Pat</Grad Student>

<Program>PhD</Program>

<Faculty Member>Kelly</Faculty Member>

<Hobby>Hiking</Hobby>

<Hobby>Skiing</Hobby>

<Grad Student>Tracy</Grad Student>

<Program>MS</Program>

<Faculty Member>Kelly</Faculty Member>

<Hobby>Hiking</Hobby>

<Hobby>Sailing</Hobby>

<Grad Student>Chris</Grad Student>

<Program>MS</Program>

<Faculty Member>Kelly</Faculty Member>

<Faculty Member 2>Kelly</Faculty Member 2>

<Department>CS</Department>

<Hobby 2>Chess</Hobby 2>

<Hobby 2>Skiing</Hobby 2>

<Faculty Member 2>Noel</Faculty Member 2>

<Department>Math</Department>

<Hobby 2>Sailing</Hobby 2>

</University>

(b) Sample XML Document

Figure 2: Sample DTD and Complying XML Document

] >. (2) To each object-set name that appears more than once in the scheme-tree forest, append
a “ 2” to the second, a “ 3” to the third, etc.8 Further, to make names comply with DTD re-
quirements, replace any white space in an object-set name by an underscore character. (3) Replace
<scheme trees> by <! ELEMENT N (<the generated scheme−tree forest>) > where N is
the selected name for the root and “the generated scheme-tree forest” is a comma-separated list of
textual representations of the scheme trees in the scheme tree forest. (4) Replace <data elements>

by a sequence of <! ELEMENT N (#PCDATA) >, one for each object-set name N including
object-set names with appended numbers. Occasionally there will be no data for a required element;
in this case, we can let the data be an empty string.

Example 2 Figure 2(a) shows a generated DTD for the two scheme trees in Figure 1(b), and
Figure 2(b) shows a sample complying XML document. 2

provide the one translation we give here, we do not concern ourselves further with this issue, but rather concentrate

on generating a forest of XNF-compliant scheme trees.
8If necessary, we can specify alternate ways to make object-set names unique. Moreover, we would normally like

to have users specify alternate names, which should be mnemonically chosen to indicate the role played by the object

set in the context of the application.
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Example 3 As motivational examples, consider the following scheme-tree forests.

1. (Department, (Faculty Member, (Hobby)*, (Grad Student, Program, (Hobby)* )* )* )*

2. (Faculty Member, Department, (Hobby)*, (Grad Student, Program, (Hobby)* )* )*

3. (Hobby, (Faculty Member)*, (Grad Student)* )*, (Grad Student, Program, Faculty Member)*,
(Department, (Faculty Member)* )*

4. (Hobby, (Faculty Member, Department)*, (Grad Student, Program, Faculty Member)* )*

5. (Faculty Member, Department, (Hobby, (Grad Student)* )* )*, (Grad Student, Faculty Mem-
ber, Program)* 2

We claim (and will shortly give the formal basis for showing) that the first two sample scheme-
tree forests in Example 3, which each consist of a single tree, can never have a redundant data
value in any complying XML document. The third scheme-tree forest, as well as the scheme-tree
forest in Figure 1(b), also never allow redundancy, but both have more than one scheme tree and
thus neither is as compact as the first two sample scheme trees. The fourth sample scheme-tree
forest allows redundancy—since faculty members and grad students are listed repeatedly for each
additional Hobby in which they participate, department values for faculty members and program
values as well as faculty advisors for grad students can be redundant. The first tree of the fifth
scheme-tree forest also allows redundancy—whenever faculty members have the same hobbies, all
the graduate students that also share these hobbies are listed.

Definition 3 Let M be a CM hypergraph whose object sets and relationship sets are populated
with data values such that the populated CM hypergraph is a valid interpretation (i.e., is a model
in terms of model theory [AD93]). Let U be the set of object sets in M . Let T be a scheme tree
over some subset of U . A scheme-tree instance over T is recursively defined as follows:

1. If T has only the root node and the root node contains the nonempty multiset O = {O1, . . . ,
On} of object sets, then r is a scheme-tree instance over T if r is a (possibly empty) set of
functions {t1, . . . , tm} where each function ti, 1 ≤ i ≤ m, maps Oj in O to a data value in
Oj in M , 1 ≤ j ≤ n.

2. If T has more than one node, then let T1, . . . , Tk, k ≥ 1, be the k subtrees of T such that
each of the root nodes of the Ti’s, 1 ≤ i ≤ k, is a child of the root node of T . Assume the
root node of T contains the nonempty multiset O = {O1, . . . , On} of object sets, then r is
a scheme-tree instance over T if r is a (possibly empty) set of functions {t1, . . . , tp} where
each function ti, 1 ≤ i ≤ p, maps Oj in O to a data value in Oj in M , 1 ≤ j ≤ n, and maps
Tq to a sheme-tree instance over Tq, 1 ≤ q ≤ k. 2

Example 4 The tuples for the first populated scheme tree in Figure 2(b) written as functions, are
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{(Grad Student, Pat), (Program, PhD), (Faculty Member, Kelly), {(Hobby, Hiking), (Hobby, Skiing)}}
{(Grad Student, Tracy), (Program, MS), (Faculty Member, Kelly), {(Hobby, Hiking), (Hobby, Sailing)}}
{(Grad Student, Chris), (Program, MS), (Faculty Member, Kelly), {}} 2

Definition 4 Let T be a scheme tree for a CM hypergraph M , and let t be a scheme-tree instance
over T . A data value v in t is redundant with respect to a constraint C that holds for M if when v

is replaced in t by some symbol, say ⊥, where ⊥ is not in t, C implies ⊥ = v. 2

Although many constraints are possible, we consider only functional constraints, multivalued
constraints, and inclusion constraints. We further restrict this set to those that are conceptual-
model compliant in the sense that they occur naturally within a conceptual-model instance as
defined below. This set of constraints is a common standard set that is sufficient for many, if not
most, practical cases.

Let T be a scheme tree. We denote the multiset of object sets in T by Aset(T ). Let N be a
node in T . Notationally, Ancestor(N ) denotes multiset that is the the union of object sets in all
ancestors of N , including N . A path of T is a sequence of nodes from the root node of T to a
leaf node of T . Thus, if T has n, n ≥ 1, leaf nodes, T has n paths. A scheme tree T is properly
constructed for a CM hypergraphM if every path of T embeds a sequence of some connected edges
in M .

Definition 5 Let T be a properly constructed scheme tree for a CM hypergraph M , and let t be
a scheme-tree instance over T . Let X → Y be a functional edge in M that is contained in a path
of T , and let s be a subtuple over XY in t. Let A be an attribute of Y ,9 and let a be the A value
in s. Then t has redundancy with respect to the functional constraint X → Y if the a-value in s

appears more than once in t. If such a scheme-tree instance t can exist, we say that T has potential
redundancy with respect to the functional constraint X → Y . 2

Example 5 Scheme-tree four in Example 3 has potential redundancy with respect to the functional
edge Faculty Member → Department because faculty members appear once for each hobby and may
participate in several hobbies. Similarly, since grad students also appear once for each hobby and
may participate in several hobbies, there is potential redundancy with respect to both the functional
constraints Grad Student → Program and Grad Student → Faculty Member.

Definition 6 Let T be a properly constructed scheme tree for a CM hypergraph M , and let t be
a scheme-tree instance over T . Let X—Y be an edge in M that is contained in a path of T , and
let s be a subtuple over XY in t. Let y be the Y subtuple in s.10 Then t has redundancy with
respect to the multivalued constraint X—Y if the y-subtuple in s appears more than once in t. If
such a scheme-tree instance t can exist, we say that T has potential redundancy with respect to the
multivalued constraint X—Y . 2

9A is Y for the binary case, but in general, Y is a set of attributes.
10For the binary case y is a value, but in general, y is a subtuple.

7



Example 6 The first scheme tree in the fifth scheme-tree forest in Example 3 has potential redun-
dancy with respect to the edge Hobby — Grad Student. Whenever faculty members have the same
hobby, hobby values appear more than once.

Observe that if a scheme tree T has potential redundancy with respect to a functional constraint,
then T clearly has redundancy with respect to a multivalued constraint.

Definition 7 A scheme-tree forest F corresponds to a conceptual-model instance M if each tree
of F is a properly constructed scheme tree and the union of the edges in all the scheme trees of F

covers the edges in M . 2

Definition 8 Let F be a scheme-tree forest corresponding to a conceptual-model instance M . Let
T be a scheme tree in F with only a root node and only one object set G in the root node. If there
exist object sets S1, ..., Sn within the nodes of F such that the Si’s (1 ≤ i ≤ n) are specializations
of G in M and G = ∪n

i=1Si for all scheme-tree-forest instances for F , the values in G are redundant
and T has potential redundancy with respect to the inclusion constraint specifying that the Si’s are
union specializations of G. 2

Example 7 To illustrate inclusion constraints and redundancy with respect to inclusion con-
straints, we present the CM hypergraphs in Figure 3. Figure 3(a) is the same as Figure 1(a)
except that Hobby is optional for both Faculty and Grad Student. The diagram in Figure 3(a)
allows all hobbies for both faculty and students to be listed, not just those shared jointly by at least
one faculty member and grad student as is the case for the hobbies in the diagram in Figure 1(a).
Using the application model instance in Figure 3(a), however, we cannot include all of the data
values in scheme-tree instances for either the first or the second scheme tree in Example 3. This is
because the model instance in Figure 3(a) allows hobbies to be listed that are neither faculty hob-
bies nor student hobbies; thus an “extra” scheme tree is necessary to accommodate these hobbies.
If this is not what we want (it probably isn’t), we should model our microworld as in Figure 3(b)
where the union constraint11 on the generalization/specialization ensures that Hobby contains only
hobbies that are faculty hobbies (contained in Faculty Hobby) or student hobbies (contained in
Grad Student Hobby). Since Hobby = Faculty Hobby ∪ Grad Student Hobby, Hobby is redundant
and we should eliminate it as Figure 3(c) shows. For Figure 3(c), the first and second scheme tree in
Example 3 apply, except that the Hobby element associated with Faculty should be Faculty Hobby

and the Hobby element associated with Grad Student should be Grad Student Hobby. With this
solution, we eliminate redundancy with respect to inclusion constraints, and we also have better
names for XML tags. 2

Definition 9 Let M be a CM hypergraph. Let F be a scheme-tree forest corresponding to M .
F is in XNFC if each scheme tree in F has no potential redundancy with respect to a specified

11A union symbol inside a generalization/specialization triangle denotes that the generalization object set is a

union of the specialization object sets.
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Figure 3: Illustration for Inclusion Dependencies and ID Redundancy

set of constraints C and F has as few, or fewer, scheme trees as any other scheme-tree forest
corresponding to M in which each scheme tree has no potential redundancy with respect to C.
When all constraints apply or when the specified set of constraints is clear from the context, we
write XNFC simply as XNF . 2

Example 8 We claim (and will later show) that only the first two scheme-tree forests in Example 3
are in XNF. 2

3 Binary Algorithm

In Figure 4 We present our first algorithm to generate scheme-tree forests. This algorithm requires
the input to be a conceptual-model instance with only binary edges connecting vertices and no
explicit generalization/specialization.

Example 9 Consider the model instance in Figure 1(a) as the input to Algorithm 1. If we select
Department as the root node, we make Faculty Member a child of Department and designate it as
a continuation attribute and then make Hobby a child of Faculty Member ; further since Faculty
Member is a continuation attribute, we make Grad Student another child of Faculty Member and
designate it as a continuation attribute and then add Program in the node with Grad Student and
finally make Hobby a child node of the node containing Grad Student. The result is the first scheme
tree in Example 3. If we select Faculty Member as the starting node, we can generate the second
scheme tree in Example 3. If we select Grad Student as the starting node, proceed as far as we
can, and then select Faculty Member from the remaining unmarked nodes and proceed, we can
generate the scheme-tree forest in Figure 1(b). Similarly, we can generate the third scheme-tree
forest in Example 3, by starting with Hobby, then Grad Student, and then Department. We cannot,
however, generate either the fourth or the fifth scheme-tree forest in Example 3. 2

Observe from our discussion of Examples 3, 5, 6, and 9 that Algorithm 1 disallows the sample
scheme-tree forests that have potential redundancy. Indeed, we claim, and will prove in Section 4
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Input: a binary CM hypergraph H

(with no explicit generalization/specialization).

Output: a scheme-tree forest.

Until all vertices and edges have been marked

If one or more unmarked vertices remain

Let V be a selected unmarked vertex in H;

Mark V in H;

Else

Select an unmarked edge E;

Let V be one of the two vertices of E;

Make V the root node of a new scheme tree T ;

Designate V in T as a continuation attribute;

While there is an unmarked edge E = (A, B) in H

such that A is a continuation attribute in T

Mark E in H;

If the B-E connection is mandatory, Mark B in H;

If A ↔ B

Add B to T in the node containing A;

If the B-E connection is mandatory

Designate B in T as a continuation attribute;

Elseif A → B

Add B to T in the node containing A;

Elseif B → A

Add B to T in a new child node of the node containing A;

If the B-E connection is mandatory

Designate B in T as a continuation attribute;

Else Add B to T in the node containing A;

Figure 4: Algorithm 1—Binary Algorithm

that Algorithm 1 can be used to generate only scheme-tree forests that have no potential redundancy
with respect to functional and multivalued constraints.

Although Algorithm 1 can guarantee no potential redundancy, it does not guarantee that the
scheme trees are as compact as possible. To get XNF (no potential redundancy and maximum
compactness), we can add the following to Algorithm 1:

• Before the Until statement, add the following statements:
Compute the functional closure of each vertex using only fully functional edges

(i.e. using only functional edges whose domain side is not optional);

Order the vertices with the first sort key being the number of closures in which the vertex appears

(descending order), the second sort key being the closure size (descending order), and the third

sort key being arbitrary (alphabetical in ascending order will do);

Discard from the tail-end of the ordered list, those vertices included in only a single closure;

Order the discarded vertices with the first sort key being the number of incident edges (descending

order) and the second sort key being arbitrary (again, alphabetical in ascending order will do);

Append this list of ordered “discarded” vertices to the tail-end of the first ordered list

(note that either one of the two ordered lists being joined together may be empty);

• Change the If-Else statement that selects the root node of a new scheme tree in Algorithm 1
to:

10



From the ordered list of vertices, select the first unmarked vertex V in H to be the root node

of a new scheme tree T .

If there is no unmarked vertex left in the list, then select the marked vertex V such that V is contained

in an unmarked edge and V comes before any other vertices contained in unmarked edges in the list.

We call Algorithm 1 with this modification Algorithm 1.1.

Example 10 For the CM hypergraph in Figure 1(a), fully functional closures are: Department+

= {Department}, Faculty Member+ = {Faculty Member, Department}, Grad Student+ =
{Grad Student, Faculty Member, Department, Program}, Program+ = {Program}, Hobby+

= {Hobby}. Thus, Department is included in three closures, Faculty Member is included in two,
Grad Student, Program, and Hobby are included in one with Grad Student having the largest
closure size. Since the last three vertices on the list are included in only a single closure, they are
ordered according to their respective number of incident edges: Grad Student has 3, Hobby has 2,
and Program has 1. Hence, the order is Department, Faculty Member, Grad Student, Hobby,
Program. Observe that for Algorithm 1.1, we produce the first scheme tree in Example 3. 2

An alternate criteria for selecting the starting node for a new scheme tree that often gives
intuitively better trees is:

Let V be the selected vertex in Algorithm 1.1.

If V has exactly one incident unmarked edge E and E is fully functional from W to V , i.e. W → V ,

select W, i.e. let V be W instead;

Else Select V ;

We call Algorithm 1 with this modification Algorithm 1.2.

Example 11 Observe that Algorithm 1.2 produces the second scheme tree in Example 3. 2

As we shall prove in the next section, we can use Algorithm 1 to guarantee no potential re-
dundancy for any starting vertex in Figure 1(a). Further, the algorithm can guarantee the fewest
scheme trees if the starting vertices for scheme trees are chosen according to one of the two criteria
presented. Thus, we can use Algorithm 1.1 or Algorithm 1.2 to produce scheme trees in XNF.

4 Assumptions, Requirements, and Guarantees

Unfortunately, Algorithms 1, 1.1, and 1.2 do not work for any CM hypergraph. Two conditions
are required: (1) canonical and (2) binary. We discuss the canonical requirement in this section
and show how to remove the binary requirement in the next section where we give a more general
algorithm for producing scheme trees for XNF-compliant XML documents.

Definition 10 A binary CM hypergraph H is canonical if (1) no edge of H is redundant; (2) no
vertex of H is redundant; and (3) bidirectional edges represent bijections. 2

11
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Figure 5: Noncanonical and Canonical Model Instances

Definition 11 Let E be an edge (V be a vertex) of a CM hypergraphH with a valid interpretation.
Let H ′ be H without E (without V and all edges and generalization/specialization constraints
incident on V ). Edge E (vertex V ) is redundant if (1) H ′ preserves the information in H (i.e. if
there exists a procedure to construct H, including its data instance, fromH ′)12 and (2)H ′ preserves
the constraints of H (i.e. if the constraints of H ′ imply the constraints of H). 2

Example 12 Figure 5(a) shows a noncanonical CM hypergraph; Figure 5(a) shows its canonical
counterpart. To illustrate the edge-redundancy requirement, consider the edge between Grad Stu-
dent and Department. If it means the department of the student’s faculty advisor, it is redundant.13

Its removal preserves both information and constraints—we can recompute it as a join-project over
the advisor and faculty/department relationship sets, and the constraints of these same two rela-
tionship sets imply both its functional and its mandatory and optional participation constraints.
Similarly, if the edge between Program and Department represents the department that administers
the student’s program, it is redundant and can be removed. Assuming that the edge with option-
als between Grad Student and Program represents a program a student has applied for, whereas
the edge with no optionals represents the program in which the student is currently enrolled, nei-
ther edge is redundant. To illustrate the vertex-redundancy requirement, consider Hobby, which
is a redundant object set as explained earlier in Example 7. To illustrate the bidirectional-edge
requirement, consider the functional edges between Department and Abbreviation and between De-
partment and Location. For the abbreviations, we have a bijection between departments and their
abbreviations (e.g. Computer Science and CS ), but for the locations we have a permutation—
Department → Location gives the address of the department, whereas Location → Department

gives the department for next mail drop for a mail carrier. Figure 5(b) shows a canonical CM hy-
12For vertex removal, we allow ourselves to know which edges and which generalization/specialization constraints

we are expected to construct and populate.
13We make neither the universal-relation assumption nor the universal-relation-scheme assumption [FMU82,

Ken81].
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pergraph. No relationship set or object set is redundant, and the bidirectional edge14 represents its
only bijection. Since we have a permutation, we choose to model it as a permutation in a recursive
relationship set Figure 5(b) shows.15 2

Using the model instances in Figure 5(a), we can illustrate the redundancy problems that can
arise from Algorithm 1 when a CM hypergraph is not canonical.

Example 13 Starting with Department in Figure 5(a), Algorithm 1 generates the scheme-tree
forest with trees (Hobby)* and (Department, Abbreviation, (Abbreviation)*, Location, (Location)*,
(Faculty Member, (Faculty Hobby)*, (Grad Student, (Grad Student Hobby)*, Program, Program)*)*,
(Grad Student)*, (Program)*)*. First observe that (Hobby)* is redundant as explained in Exam-
ple 7. Next observe that (Program)* is a list of programs for a department, but according to
the model, these can all be computed by finding the programs of the grad students being advised
by faculty members in the department. Similarly, (Grad Student)* is a list of grad students in a
department, but these can all be computed by finding the grad students being advised by faculty
members in the department. Finally, observe that the constructions Abbreviation, (Abbreviation)*
and Location, (Location)* are strange. For the departmental abbreviations which are in a one-to-
one correspondence with the departments, we should drop the second mention in (Abbreviation)*
because it is redundant. For the locations, (Location)* represents the address of the department
whereas Location represents the address of the department next on the list in a mail route; thus,
they should both be left as they are. As we shall see in the next example, however, we can fix this
awkward construction by a heuristic modification. 2

Example 14 By way of contrast to Example 13, starting with Department in Figure 5(b),16 Al-
gorithm 1 generates the scheme tree forest (Department, Abbreviation, Location, Department of
next mail drop-off, (Faculty Member, (Faculty Hobby)*, (Grad Student, (Grad Student Hobby)*,
Program,, Program applied for)*)*)*. Observe that the redundant lists of programs, grad students,
and hobbies are not present and that the redundant abbreviations and awkward locations have
disappeared. 2

We now turn our attention to proving that Algorithm’s 1.1 and 1.2 generate XNF scheme trees.

Lemma 1 Let T be a properly constructed scheme tree for a CM hypergraph M . Let P be a path
of T and let E be an edge in M that is contained in P . Let NE be the closest node to the root
node in P such that E ⊆ Ancestor(NE ). T has potential redundancy with respect to a multivalued

14Note that A ↔ B is not the same as A → B and A ← B. The former indicates a bijection, whereas the latter

simply means two functional relationships between A and B.
15This choice does not effect our XNF result, but it is a heuristic transformation that almost always produces a

more pleasing result.
16For clarity we make use of the names designating the meaning of some of the relationship sets. We suggest the use

of clarifying information whenever there may be ambiguity, or even just whenever additional clarifying explanations

are appropriate or desired.
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constraint X—Y , where {X, Y } is a partition of E, if and only if E �→ Ancestor(NE ).
Proof Sketch: The main idea17 is that if E �→ Ancestor(NE ), the nesting of T cannot collapse
all of the data values in an instance over E. On the other hand, if E → Ancestor(NE ), then the
nesting is able to collapse all of the data values. 2

Lemma 2 Let H be a canonical CM hypergraph with no explicit generalization/specialization
whose edges are all binary. Let T be a scheme tree generated by Algorithm 1. Let A be a
continuation attribute in T , and let NA be the node in T such that A ∈ NA. A → Ancestor(NA).
Proof Sketch: This lemma can be proved by induction on the number of vertices contained in T

and by analyzing the four cases in Algorithm 1. 2

Theorem 1 Let H be a canonical CM hypergraph with no explicit generalization/specialization
whose edges are all binary. Let T be a scheme tree generated by Algorithm 1. T has neither po-
tential redundancy with respect to multivalued constraints nor potential redundancy with respect
to functional constraints.
Proof Sketch: We proceed by induction on the number of iterations of the while-loop in con-
structing T . Using Lemmas 1 and 2, the result follows. 2

We now prove that Algorithm 1.1 is able to generate minimal number of scheme trees from the
given binary canonical CM hypergraph H. However, we first need to define full FD paths in H,
which are useful in the proof. (1) A vertex V in H is a (trivial) full FD path from V to V . (2) If V1

→ V2 → · · · → Vn, n ≥ 1, is a full FD path from V1 to Vn, and Vn → Vn+1 is a functional edge in
H with a mandatory connection on Vn, then V1 → V2 → · · · → Vn → Vn+1 is a full FD path from
V1 to Vn+1. (3) The construction of a full FD path must follow Rules (1) and (2).

Lemma 3 Let H be a canonical CM hypergraph with no explicit generalization/specialization
whose edges are all binary. Two vertices V1 and V2 (not necessarily distinct), where V1 is in edge
E1 and V2 is in edge E2, can appear in the same scheme tree T with no potential redundancy with
respect to either E1 or E2 if and only if there is a vertex V3 in E1, there is a vertex V4 in E2, and
there is a vertex V5 in H such that there is a full FD path from V3 to V5 in H, and there is a full
FD path from V4 to V5 in H.
Proof Sketch: The if-part is obvious since we may simply choose V5 as the root node of a new
scheme tree T in Algorithm 1. The only-if part follows from Lemma 1. 2

Theorem 2 Let H be a canonical CM hypergraph with no explicit generalization/specialization
whose edges are all binary. If F is a scheme-tree forest generated from H by Algorithm 1.1, then
each tree in F is in XNF{FC,MC}.18

17Full proofs for all proof sketches can be found in a technical report, which is a longer (unpublished/unsubmitted)

version of this paper, at http://osm.cs.byu.edu/Papers.html.
18In this notation, FC denotes a functional constraint, MC denotes a multivalued constraint, and IC denotes an

inclusion constraint.
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Figure 6: N -ary Noncanonical and Canonical Model Instances

Proof Sketch: We show, using Lemma 3, that generating a scheme tree will not hinder the
clustering of two vertices that can be clustered together. We then analyze the four cases on how
two vertices can be clustered, and the result follows. 2

Corollary 1 Let H be a canonical CM hypergraph with no explicit generalization/specialization
whose edges are all binary. If F is a scheme-tree forest generated from H by Algorithm 1.2, then
each tree in F is in XNF{FC,MC}.
Proof Sketch: Since W is designated as a continuation attribute whether V or W is selected as
the root node, the extent of the scheme tree does not change. 2

5 N-ary Algorithm

In this section we generalize Algorithm 1 for CM hypergraphs with n-ary edges. Three new problems
arise in the generalization: (1) n-ary edges may be compositions of edges with lesser arity, (2)
connecting sets of attributes between relationship sets may have different meanings, and (3) there
are more degrees of freedom for scheme-tree configurations. We discuss each of these problems in
turn.

Edge Decomposition. As one example of edge decomposition, consider the edge connecting
Name, Address, Phone, and Major in Figure 6(a). If the phone for the person identified by the
Name-Address pair is the home phone at the address of the person (i.e. is not the cell phone,
for example), the 4-ary edge can be reduced by making the phone dependent only on the address
as Figure 6(b) shows. As another example of edge decomposition, consider the 5-ary edge in
Figure 6(a). Assuming that the schedule depends only on the course itself (the normal assumption
unless the course is an individual-instruction course), we can decompose the edge as Figure 6(b)
shows. Whether we can split the day from the time depends on the scheduling policy; our choice
in Figure 6(b) assumes that courses can be scheduled at different times on different days.

There are multiple ways an edge can be decomposed, but these are all found in the relational
database literature. Thus, we only mention them here without redeveloping them. Included are
reductions to satisfy the requirements of 3NF (head and tail reductions in [Emb98]), reductions to
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satisfy the stronger requirements of BCNF (embedded FD reductions [Emb98]), and reductions to
satisfy the even stronger requirements of 4NF and 5NF (non-FD edge reductions [Emb98]). The
sample reduction for home phones above is a head reduction (right-hand-side reduction in [Mai83]),
and the sample reduction for course schedules is a non-FD edge reduction (a lossless-join reduction
in [Mai83]).

To accommodate these requirements, we now augment our definition of what it means for a CM
hypergraph to be canonical.

Definition 12 A binary CM hypergraph H is canonical if (1) no edge of H is redundant; (2) no
vertex of H is redundant; (3) bidirectional edges represent bijections; and (4) every n-ary edge is
fully reduced. 2

Example 15 The CM hypergraph in Figure 6(a) is noncanonical—neither the 4-ary nor the 5-ary
edge is fully reduced. Assuming, as stated earlier, that the Course-Day-T ime relationship set
cannot be further reduced, the CM hypergraph in Figure 6(b) is canonical. 2

Different Meanings. Consider Name-Address pairs in Figure 6(b). Suppose there are two names
n1 and n2 and two addresses a1 and a2. Further suppose that in the relationship set with Major,
n1 relates to a1 and n2 relates to a2, but in the relationship set with Course, n1 relates to a2 and n2

relates to a1. Under these assumptions, we cannot have the scheme tree (Major, (Name, Address,
(Course)* )* )*, which we would expect should be permissible. We cannot have this scheme tree
because under Major our scheme-tree instance would have the subtuples {(Name, n1), (Address,
a1)} and {(Name, n2), (Address, a2)}, but in order to nest courses under these tuples, we need
{(Name, n1), (Address, a2)} and {(Name, n2), (Address, a1)}.

In general, to provide for nesting, the projections on the intersecting attribute sets between two
edges must be identical for every valid interpretation. This condition holds when the projections
on the intersection object sets between two edges have the “same meaning.” Indeed, for the
CM hypergraph in Figure 6(b), Name-Address pairs have the same meaning in both the Major

relationship set and the Course relationship set—in both, the pair identifies an individual student.

Degrees of Freedom. Consider the ternary is-taking-course relationship set in the CM hyper-
graph in Figure 6(b). The scheme trees we may create for this relationship set include, for exam-
ple, (a) (Course, Name, Address)*, (b) (Address, (Name, Course)*)*, and (c) (Name, (Address,
(Course)*)*)*. Whereas there are only three possible scheme trees for a nonfunctional binary re-
lationship set, there are thirteen possible scheme trees for a nonfunctional ternary relationship set
such as the is-taking-course relationship set in Figure 6(b). For an n-ary edge in general, we may
have any of the 2n − 1 sets of vertices in the root node of its scheme tree, any of the 2n1 − 1 sets
of vertices of the remaining n1 vertices not chosen for the root in its first sublevel node, any of the
2n2 − 1 sets of vertices of the remaining n2 vertices not chosen for the root or first sublevel node in
its second sublevel node, and so forth.
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Input: a canonical CM hypergraph H (with no explicit generalization/specialization).

Output: a scheme-tree forest.

Until all edges and vertices have been marked

If one or more unmarked edges remain

Select an unmarked edge E in H;

Create a single-path scheme tree T from E such that

the set of nodes in T is a partition of E, and

either each vertex in the root node of T is mandatory for E,

or there is at most one vertex in the root node of T ;

For each vertex V in E

If the V -E connection is mandatory or V is the root node of T ,

Mark V in H and designate V in T as a continuation attribute;

While there is an unmarked edge E in H such that

(1) P is a path in T ,

(2) D is the maximal nonempty set of attributes in E ∩ P that

has the “same meaning” in both E and P ,

(3) each of the attributes in D is designated as a continuation attribute in P ,

(4) there exists a node N in P such that D ⊆ Ancestor(N ) and

E → Ancestor(N );

(5) If there are more than one nodes that satisfy Condition 4,

let N be the lowest one.

Mark E in H;

Create a single-path scheme tree T ′ from E − D such that

the set of nodes in T ′ is a partition of E − D;

Make the root node of T ′ the child of N ;

For each vertex V in E

If the V -E connection is mandatory,

Mark V in H and designate V in T as a continuation attribute;

Else

Select an unmarked vertex U ;

Make U the root node of a new scheme tree;

Mark U in H;

Figure 7: Algorithm 2—N -ary Algorithm

The additional degrees of freedom make it more difficult to specify a scheme-tree generation
algorithm, but the idea for the generalization of Algorithm 1 is straightforward—we are still search-
ing for the largest hierarchical structures embedded within the CM hypergraph. Figure 7 shows
Algorithm 2, which generalizes Algorithm 1 by allowing n-ary edges.

Example 16 Consider the model instance in Figure 6(b) as the input to Algorithm 2. We choose
the initial single-path scheme tree to be Major as the root, with Name and Address together in
a child node of the root. We mark all three attributes in the given hypergraph and designate all
of them as continuation attributes in the scheme tree. Since the edge {Name, Address, Course}
satisfies the five conditions of the while-loop, we add Course as a child of the node containing Name
and Address. Course is then marked and designated as a continuation attribute. However, we can
attach neither the edge {Course, Day, Time} nor the edge Address → Phone to the scheme tree
since we cannot find the node N in Algorithm 2 that satisfies the five conditions for these two
edges. In particular, Condition 4 cannot be satisfied. We thus create a scheme tree for each of
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these two edges. The resulting scheme-tree forest is: (Major, (Name, Address, (Course)* )* )*,
(Course, (Day, Time)* )*, (Address, Phone)*. 2

Although still an open question for future research, there appears to be no effective algorithm
for guaranteeing the fewest possible scheme trees. The problem is that there are too many degrees
of freedom—too many ways to add an n-ary edge to a scheme tree. Unfortunately, the choice makes
a difference and the proper choice cannot always be determined until additional edges are added
to a scheme tree. Thus, backtracking is required.

Example 17 Consider a hypergraph with three edges AB, ACD, and ACE. The only scheme tree
that contains all three edges is the one with A as the root node, B and C as the children of A, and
D and E as the children of C. Thus for three edges, we have three intersections to check, each of
which is the intersection of two edges. In general, if there are n edges in the given hypergraph, there
are C(n, 2) intersections to check (assuming they all have the same meaning in the intersections).
Obviously, this ordering of intersections takes exponential time.

We can nevertheless apply variations to Algorithm 2 that are similar to the variations of Al-
gorithm 1, as specified in Algorithm 1.1 and 1.2. For CM hypergraphs whose edges only intersect
on single object sets or whose only multiple-object-set edge intersections follow a single path in
the hypergraph, we can use variations similar to Algorithm 1.1 and 1.2 to guarantee minimality.
Since real-world CM hypergraphs tend to have mostly binary edges or tend to satisfy these stricted
constraints, there is usually an effective algorithm for generating XNF. Furthermore, when these
conditions do not hold, the subgraphs over which nondeterministic backtracking must be applied
is usually small enough to allow for an exhaustive search. We leave for future research precise
characterizations of these claims.

In the meantime, for this paper, we let Algorithms 2.1 and 2.2 be similar in spirit to Algorithms
1.1 and 1.2,19 and we let Algorithm 2.3 be Algorithm 2 altered (1) to generate nondeterministic
threads for all possible node configurations when an edge is added to a scheme tree and (2) to select
a final minimal scheme-tree forest from the ones nondeterministically generated as a final step in
the algorithm.

Theorem 3 Let H be a canonical CM hypergraph with no explicit generalization/specialization.
Let T be a scheme tree generated by Algorithm 2. T has neither redundancy with respect to a
multivalued constraint nor redundancy with respect to a functional constraint.
Proof Sketch: The proof is similar to the proof of Theorem 1. 2

Corollary 2 Let H be a canonical CM hypergraph with no explicit generalization/specialization.
If F is a scheme-tree forest generated fromH by Algorithm 2.3, then each tree in F is in XNF{FC,MC}.

19We do not specify these exactly since we cannot prove that they lead to XNF scheme-tree forests.
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Input: a canonical CM hypergraph H.

Output: a scheme-tree forest.

“Collapse” each generalization/specialization hierarchy;

If the edges are all binary, Execute Algorithm 1.1 or 1.2;

Else Execute Algorithm 2.3;

Figure 8: Algorithm 3—General Algorithm

Proof Sketch: Theorem 3 guarantees no potential redundancy and the last step of Algorithm 2.3
guarantees that the generated scheme-tree forest has a minimal number of scheme trees. 2

6 General Algorithm

In this section we further generalize our algorithms to allow CM hypergraphs with explicit gener-
alization/specialization denoted by ISA triangles in CM hypergraphs. This generalization causes
two new problems: (1) object sets may be redundant, and (2) ISA constructs must be consid-
ered in scheme-tree generation algorithms. We discussed and illustrated object-set redundancy in
Section 2: whenever we can compute the contents of an isolated root generalization object set as
explained in Example 7, we eliminate it. To handle all other ISA constructs, we collapse them into
roles and thus eliminate them too. Once all ISA constructs have been eliminated, we are left with
CM hypergraphs that can be processed by Algorithm 2, or by Algorithm 1 if all relationship sets
happen to be binary. Figure 8 gives Algorithm 3.

We collapse ISA constructs as follows. We first preprocess any ISA triangles having n special-
izations, n > 1, by splitting the ISA into n ISA constructs, one for each specialization. We then (1)
discard the specialization object set and the ISA construct, (2) attach all relationship sets incident
on the specialization object set to the generalization object set and make all the connections op-
tional, and (3) add the name of the discarded object set as a role name for the connection. When
we collapse a chain of ISA constructs, we collect all the role names, separating them by commas.

Example 18 Figure 9 illustrates the process of collapsing ISA constructs and generating roles.
We split the Hobby ISA construct in Figure 9(a) into two ISA constructs and then discard both
specializations and make Faculty Hobby and Grad Student Hobby roles on optional connections for
relationship sets respectively between Hobby and Faculty Member and Hobby and Grad Student
as Figure 9(b) shows. For the ISA hierarchy under Faculty Member in Figure 9(a), we first make
Advisor a role of Grad Faculty and then make Grad Faculty a role of Faculty Member. In addition,
Number Graduated is now optionally connected to Faculty Member as Figure 9(b) shows. When
there are no incident relationship sets, we simply discard the specialization and leave the role on
an optional connection to the generalization, as we have done for Grad Department in Figure 9(b).
2
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Example 19 Given the CM hypergraph in Figure 9(b), we can use Algorithm 1.2 to generate the
scheme-tree forest: (Department, (Faculty Member, Number Graduated, (Hobby)*, (Grad Student,
Program, (Hobby)* )* )* )*, (Hobby, (Equipment)* )* 2

Theorem 4 Let H be a canonical CM hypergraph. If F is a scheme-tree forest generated from H

by Algorithm 3, then each tree in F is in XNF{FC,MC,IC}.
Proof Sketch: Algorithm 3 requires H to be canonical, collapses all generalization/specialization
hierarchies, and then uses an algorithm known to produce XNF. Thus, each tree generated is in
XNF{FC,MC,IC}. 2

Although we have shown that scheme-tree forests generated by Algorithm 3 are in XNF, we
nevertheless observe that all the specialization information is implicit. In the scheme-tree forest
in Example 19, for example, there is no explicit way to say that a faculty member is an advisor.
Implicitly, we can say that the faculty members who associate with at least one grad student are
advisors, but this inference is only implicit.

To solve this problem, we can augment our scheme trees by adding roles. We add a question
mark to each role name, and then place these augmented names in parentheses, and append the
parenthesized names to an object set. We place roles in scheme trees as we encounter the connections
to which they belong in our scheme-tree-generation algorithms.

Example 20 Augmented with role names the scheme trees in Example 19 become: (Department
(Grad Department?), (Faculty Member, (Grad Faculty?, Advisor?), Number Graduated, (Hobby
(Faculty Hobby?) )*, (Grad Student, Program, (Hobby, (Grad Student Hobby?) )* )* )* )*,
(Hobby, (Equipment)* )* 2
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We use role names in two ways when we generate XML DTDs: (1) we use them in place of
an object set, and (2) we add them as attributes. If the object set to which a role is attached
is a continuation attribute in the scheme tree, we add the role as an attribute in the object set’s
XML tag. If, on the other hand, the object set to which the role is attached is not a continuation
attribute, we replace the tag name with the tag name of the role.

Example 21 Figure 10(a) shows an example of the DTD we can generate from the scheme trees
in Example 20, and Figure 10(b) shows a partial possible complying XML document. Note that
Faculty Hobby and Grad Student Hobby are XML tags (because each is associated with a noncon-
tinuation attribute), whereas Grad Faculty, Advisor, and Grad Department are XML attributes
(because each is associated with a continuation attribute). 2

7 Concluding Remarks

We have proposed and formally defined XNF (XML Normal Form). XNF guarantees that complying
XML documents have no redundant data values and have maximally compact connectivity. We
have also developed conceptual-model-based algorithms (Algorithms 1.1, 1.2, 2.3, and 3) to generate
DTDs to ensure that complying documents are in XNF, and we have proved that these algorithms
are correct (Theorems 1–4 along with Corollaries 1–3).

We have implemented a tool to work synergistically with a user to develop XNF-compliant
DTDs. Currently our tool allows users to specify CM diagrams, to convert diagrams to CM
hypergraphs, to apply either Algorithms 1.1 or 1.2, or to select root nodes for scheme trees and
then apply Algorithm 1. In another tool, we have implemented, users can synergistically convert
CM hypergraphs into canonical hypergraphs.

As for current and future work, we need to integrate these two tools so that we can have the
synergistic system we desire. We also need to implement Algorithms 2 and 3 and their variations,
and we need to formally characterize the restrictions to n-ary CM hypergraphs for which there
exist effective scheme-tree generation algorithms. We also intend to investigate additional heuristic
variations of scheme-tree generation algorithms and synergistic development of XNF-compliant
DTDs.

Acknowledgements: This material is based upon work supported by the National Science Foundation under grant No.
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<!DOCTYPE University[

<!ELEMENT University (

(Department, (Faculty Member,

Number Graduated, (Faculty Hobby)*,

(Grad Student, Program,

(Grad Student Hobby)* )* )* )*,

(Hobby, (Equipment)* )* )>

<!ELEMENT Department (#PCDATA)>

<!ATTLIST Department

Role CDATA #IMPLIED>

<!ELEMENT Faculty Member (#PCDATA)>

<!ATTLIST Faculty Member

Role CDATA #IMPLIED>

<!ELEMENT Number Graduated (#PCDATA)>

<!ELEMENT Faculty Hobby (#PCDATA)>

<!ELEMENT Grad Student (#PCDATA)>

<!ELEMENT Program (#PCDATA)>

<!ELEMENT Grad Student Hobby (#PCDATA)>

<!ELEMENT Hobby (#PCDATA)>

<!ELEMENT Equipment (#PCDATA)>

]>

(a) Sample DTD Specification Generated from an

Augmented Scheme-Tree Forest

<University>

<Department Role=”Grad Department”>

Math</Department>

<Faculty Member Role=”Grad Faculty & Advisor”>

Kelly</Faculty Member>

<Number Graduated>23</Number Graduated>

<Faculty Hobby>Chess</Faculty Hobby>

<Faculty Hobby>Skiing</Faculty Hobby>

<Grad Student>Pat</Grad Student>

<Program>PhD</Program>

<Grad Student Hobby>

Hiking</Grad Student Hobby>

<Grad Student Hobby>

Skiing</Grad Student Hobby>

<Grad Student>Tracy</Grad Student>

<Program>MS</Program>

<Grad Student Hobby>

Hiking</Grad Student Hobby>

<Grad Student Hobby>

Sailing</Grad Student Hobby>

...

<Faculty Member Role=”Grad Faculty”>

Noel</Faculty Member>

...

<Faculty Member>Lynn</Faculty Member>

...

<Department>History</Department>

...

</University>

(b) Sample XML Document for the Augmented Speci-

fication

Figure 10: Sample DTD Generated from an Augmented Scheme-Tree Forest Along with a Sample
Complying XML Document
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