Implementation

- Faithful translation of a design into a target environment
- Design should be free of target-environment dependencies
- Should generate target software algorithmically
 - This preserves the application model as the source and treats code as another view.
 - Changes should be made in the application model, not the code.
 - In the absence of tools to do this translation automatically, this ideal is hard to achieve.

ODMG (Object Database Management Group)

- Goal: Develop a standard for object databases.
- Approach: Transparently integrate OO languages with DBs
 - make the query language and the programming language one and the same
 - extend OO languages with persistence, concurrency control, crash recovery, and query processing
 - extend DBs by making objects appear like programming objects in one of several OO programming languages
- Components
 - ODL: Object Definition Language
 - OML: Object Manipulation Language
 - OQL: the query part of OML

ODMG Language Bindings

- Examples: C++, Smalltalk, Java
- Provides a representation of ODMG ODL & OML in terms of the OO language
- L+ Program → Executable Code
 - L+ Program (L+ ODL, L OML, L Auxiliary Code)
 - Preprocessor: L+ ODL → DB Schemes & L Declarations
 - Linker: L Object Code, L DB Runtime Package (provided code library) → Executable Code (which runs the application and accesses the DB)

ODMG ODL

- interface – names an ODL declaration
- extent – names the set of objects declared
- key[s] – declares keys
- persistent | transient – makes the extent persistent or transient
- attribute – declares an attribute
- readonly – makes an attribute a read-only attribute
- Set | List | Bag | Array – declares a collection type
- relationship – declares a relationship
- inverse – declares an inverse relationship

B&B Example – Generated Database Scheme

Room(RoomNr, RoomName, NrBeds, Cost)
Guest(GuestNr, GuestName, StreetNr, City)
Reservation(GuestNr, RoomNr, ArrivalDate, NrDays)

Room[RoomNr] → Reservation[RoomNr]
Guest[GuestNr] = Reservation[GuestNr]

B&B Example – ODMG ODL Abstraction Diagram

Room(RoomNr, RoomName, NrBeds, Cost)
Reservation(GuestNr, RoomNr, ArrivalDate, NrDays)
Guest(GuestNr, GuestName, StreetNr, City)

Guest[GuestNr] = Reservation[GuestNr] → Reservation[RoomNr] → Room[RoomNr]

is reserved in

is for

has

is for

is for
B&B Example – ODL for Room

```java
interface Room {
    extent Rooms
    keys RoomNr, RoomName
} persistent {
    attribute Unsigned Short RoomNr;
    relationship Set<Reservation> is_reserved_in_Reservation
    inverse Reservation::is_for_Room;
    attribute String RoomName;
    attribute Unsigned Short NrBeds;
    attribute Unsigned Short Cost;
}
```

B&B Example – ODL for Reservation

```java
interface Reservation {
    extent Reservations
    keys (RoomNr, ArrivalDate)
} persistent {
    attribute Unsigned Short GuestNr;
    relationship Reservation has_Reservation
    inverse Guest::has_Reservation;
    attribute Unsigned Short RoomNr;
    relationship Room is_for_Room
    inverse Room::is_reserved_in_Reservation;
    attribute String ArrivalDate;
    attribute Unsigned Short NrDays;
}
```

B&B Example – ODL for Guest

```java
interface Guest {
    extent Guests
    keys GuestNr, (GuestName, StreetNr, City)
} persistent {
    attribute Unsigned Short GuestNr;
    relationship Guest has_Reservation
    inverse Reservation::is_for_Guest;
    attribute String GuestName;
    attribute String StreetNr;
    attribute String City;
}
```

OQL

- Basic SQL syntax: select-from-where
- additional flexibility
 - nesting: computed relations in select, from, and where clauses
 - expressions: path expressions, user-defined operators, use of collections such as array, list, and bag

OQL – Examples

List the name and address of Guests with reservations for more than one day.

```sql
select struct(x.GuestName, x.StreetNr, x.City)
from x in Guest, y in x.has_Reservation
where y.NrDays > 1
```

Is there a reservation for the Kennedy room on 13 May?

```sql
exists x in Reservation : x.ArrivalDate = "13 May"
and x.is_for_Room.RoomName = "Kennedy"
```

For each room, list the cities and arrival dates of guests with reservations.

```sql
select struct(x.RoomName,
                (select struct(y.ArrivalDate, y.is_for_Guest.City)
                 from y in x.is_reserved_in_Reservation))
from x in Room
```

ODMG C++

- ODMG design principle:
 - the programmer should see only one language (not one embedded in the other)
 - ODMG C++ should look like C++ (as much as possible)
- Problems
 - persistence – inherit from Persistent_Object and add Ref< > to provide access to the instances
 - relationships – extend the language with an inverse clause
 - programmer responsibility – enforce key constraints and other integrity constraints
B&B Example – ODMG C++ Abstraction Diagram

SiteOfInterest(View, Site)

Room(RoomNr, RoomName, Cost, View, Reservation(ArrivalDate, NrDays, GuestNr)*)

Guest(GuestNr, GuestName, StreetNr, City)

B&B Example – ODL C++ for SiteOfInterest and Guest Classes

class Room : public Persistent_Object {
 unsigned short RoomNr; // key
 String RoomName; // key
 unsigned short Cost;
 String View;
 Ref<SiteOfInterest> has_SiteOfInterest
 inverse SiteOfInterest::is_for_Room;
 Set<Reservation> Reservations;
 static Ref< Set< Ref<Room> > > Rooms;
 static const char * const extent_name;
};

class Guest : public Persistent_Object {
 unsigned short GuestNr; // key
 String GuestName; // key (GuestName, StreetNr, City)
 String StreetNr;
 String City;
 static Ref< Set< Ref<Guest> > > Guests;
 static const char * const extent_name;
};

B&B Example – ODL C++ for Room Class

struct Reservation {
 Date ArrivalDate;
 unsigned short NrDays;
 unsigned short GuestNr;
 Ref<Guest> identifies_Guest;
};

B&B Example – OML C++ Service

void GetArrivingGuestList(const Date &today) {
 Transaction getArrivingGuestList;
 Set< Ref<Guest> > guests;
 getArrivingGuestList.begin();
 cout << "Guests arriving on " << today << endl;
 oql(guests, "select r.identifies_Guest"
 "from r in (select x.Reservations from x in Room)"
 "where r.ArrivalDate = $1", today);
 ListArrivingGuests(guests);
 getArrivingGuestList.commit();
}

B&B Example – OML C++ Service (cont.)

#include <iostream.h>
#include "schema.hxx"
static Database BandB_DB;
static void ListArrivingGuests(const Collection< Ref<Guest> > &guestSet) {
 Ref<Guest> guest;
 Iterator<Ref<Guest> > git = guestSet.create_iterator();
 while(git.next(guest))
 cout << guest->GuestName << "",
 guest->City << endl;
 }

OSM Development Methodology

- Model-Driven Development
 - come to understand application
 - transform understanding through development into code
 - use theory and techniques
 - formalism – tunable, helps achieve better understanding
 - tool support
 - solve problems and achieve success
- Check Lists
 - process guide (not step by step, but ordered to help)
 - reminder about items that may be overlooked