Analysis

- Study of a system (e.g., a software system to be built)
- Objectives
 - understand system
 - document understanding
 - promote a common understanding among participants (e.g., clients, analysts, developers, users, managers)
- Key activities
 - studying
 - learning
 - writing
 - communicating

Analysis of Customer Requirements

There’s more than just systems analysis.

- Understand application context
 - general business objectives
 - specific business needs to be addressed by the system
- Understand business constraints
 - cost
 - schedules
 - legal considerations
- Understand the technical constraints
 - available technical resources (hardware, software, personnel)
 - technology and expertise that can be brought in for the project

Needs and Feasibility Assessment

- Suggested Alternative
- Primary Alternative
- Feasibility Consideration
- Economic Consideration
- Legal Consideration
- Constraint
- Schedule Constraint
- Need
- Cost Constraint
- Technical Consideration
- Goal
- Trade-off
- Criteria

Using OSM for Needs and Feasibility Modeling

- Standard guide to assessing needs and feasibility
- Standard, but can be tailored for particular projects
- Can be prepopulated with data and used for several projects
- Same model for assessment and application development
- Can query the assessment model with standard query languages (in the same way as the application model)

Query Languages for OSM

- OSM-QL
- OSM-Algebra
- OSM-Calculus
- OSM-SQL
Chapter 7 - OSM-Algebra

List goals for the primary alternative.

\[\text{Goal} \rightarrow \text{Suggested Alternative} = \text{Primary Alternative} \]

List suggested alternatives that satisfy all needs.

\[\text{Goal} \rightarrow \text{Need} = \text{Goal} \rightarrow \text{Suggested Alternative} \Rightarrow \text{Primary Alternative} \]

Chapter 7 - OSM-Calculus

List goals for the primary alternative.

\[\{ <x> | \exists y (\text{Goal}(x) \land \text{Suggested Alternative}(y) \land \text{Primary Alternative}(y)) \} \]

List suggested alternatives that satisfy all needs.

\[\{ <x> | \not\exists y (\text{Goal}(x) \land \text{Suggested Alternative}(y) \land \text{Primary Alternative}(y)) \} \]

Chapter 7 - OSM-SQL

List goals for the primary alternative.

\[\text{select Goal} \]
\[\text{from} \text{ satisfies, Goal, Primary Alternative} \]
\[\text{where} \text{ Suggested Alternative} = \text{Primary Alternative} \land \text{Goal} = \text{Need} \]

List suggested alternatives that satisfy all needs.

\[\text{select Suggested Alternative} \]
\[\text{from} \text{ Suggested Alternative A} \]
\[\text{where not exists } <x> \]
\[\text{select } <x> \]
\[\text{from} \text{ Need N} \]
\[\text{where not exists } <x> \]
\[\text{select } <x> \]
\[\text{from} \text{ satisfies S} \]
\[\text{where N.Need} = \text{S.Need} \land \text{A.Suggested Alternative} = \text{S.Suggested Alternative} \]

Chapter 7 - Analysis Methods

- Analysis is a knowledge-discovery task
 - learning is never easy
 - requires deep involvement with information
 - often faced with vague and contradictory information
 - experience counts

- General approaches
 - ask questions, observe activities, read documents and forms
 - learn by formal writing and by model construction

- Specific approaches
 - methodologists: e.g., scenarios, use cases, CRC cards, ...
 - proprietary approaches often used in consulting firms
 - model-driven approach (OSM)

Chapter 7 - OSM Model-Driven Analysis

- Ontological model
 - models can either expand or limit our ability to analyze
 - best: models that let us directly record structural and behavioral concepts as found in the system being modeled

- Match analysis approach with application characteristics
 - ORM approach
 - data intensive application components
 - examples: personal records, business data, scientific data
 - OBM approach
 - components with intensive individual object behavior
 - examples: behavior drivers for elevators, machining, traffic lights
 - OIM approach
 - components with intensive interactive behavior
 - examples: automatic-teller machines, airline reservations, sensors

Chapter 7 - Application-Model Integration

- Large projects
 - several analysts each tackle a manageable-size component
 - systematically integrate these components

- Approach to integration
 - integration framework and strategy
 - framework: high-level OSM application model
 - strategy: decisions about how to proceed and how to resolve conflicts
 - integration activities
 - compare: identify correspondences and conflicts
 - conform: resolve conflicts
 - merge: put components together and reorganize as warranted
Chapter 7 - 13

Example: Integration Framework

```
Room is reserved for Guest
```

High-level diagrams work well for specifying integration frameworks.

Chapter 7 - 14

Example: ORM Integration

Name conflict: Name of Room vs. Name of Guest; Person vs. Guest
Structural conflict: reservations
Constraint conflict: minimum participation of Room in reservations

Chapter 7 - 15

Example: Integrated ORM

```
Room NrDaysArrivalDate
Guest
Future
Guest
Current
Guest
City
StreetNr
Name
Room
GuestNr
Cost
RoomName
RoomNr
1 has 1
1 has 1 has 1:*
1 has 1
1:* 1:*
1:*
1:*
1:*
1:*
1:
1:*
1:*
1:*
1:*
0:* 1
0:*
0:*
Name conflict: Name of Room vs. Name of Guest; Person vs. Guest
Structural conflict: reservations
Constraint conflict: minimum participation of Room in reservations
```

Chapter 7 - 16

Example: OBM Integration

```
Reservation Clerk @ request guest list
list arriving guests
Exists @ special guest arriving and not yet notified proprietor
notify proprietor
@ cancel
cancel reservation
Ready @ new reservation
make reservation
Reservation Clerk @ request guest list
list arriving guests
Exists @ special guest arriving and not yet notified proprietor
notify proprietor
@ cancel
cancel reservation
@ new reservation
make reservation
```

Chapter 7 - 17

Example: Integrated OBM

```
Reservation Clerk
@ request guest list
list arriving guests
Ready @ special guest arriving and not yet notified proprietor
notify proprietor
@ cancel
cancel reservation
@ new reservation
make reservation
```

Chapter 7 - 18

Analysis Validation

- Checking a model for completeness and correctness
 - Discovery (Chapter 7)
 - Formalization (Chapter 8)
 - Requires skill and insight ("Ya gotta use your head.")
- Discovery techniques
 - Formal technical review
 - Systematic scrutiny based on queries, behavior scenarios, and interaction sequences
 - "White-box and black-box testing"
 - Object classification
 - Cohesive sets of objects
 - Structural similarity
 - Behavioral similarity
White-Box Validation

- “Fire” each transition
- “Execute” each state net
- Check correctness
- Check completeness
 - Are all expected/required scenarios addressed?
 - Are all exceptions handled?

Black-Box Validation

- ORM perspective
 - Pose and “execute” ad hoc queries.
 - Does the application model contain the information necessary to answer these queries?
- OIM perspective
 - Consider stand-alone interactions and interaction sequences.
 - Does the application model include all interactions and interaction sequences required in the system being built?
- OBM perspective
 - Check the receiving end of interactions.
 - Are all required application-model interactions handled?

Object Classification

- Why classify?
 - may discover new object sets
 - may cause us to better organize object structure and behavior
 - may help us better understand an analysis application model
- Classify based on similarity
 - the more two objects are related to other objects in the same way, the more they are similar
 - the more two objects behave the same, the more they are similar

Congruency

- An object set is congruent if the common properties of the objects in an object set S coincide with the properties explicitly defined for S.
- Explicit properties – given in application model
- Common properties
 - Common relationship-set property: all objects participate
 - Common state-net property: all objects can be in state or transition
 - Common interaction property: all objects can interact the same
- Incongruent:
 - Overstatement: explicit property not common to all
 - Understatement: common to all but not explicit

Structural Congruency

<table>
<thead>
<tr>
<th>Congruent:</th>
<th>Incongruent:</th>
</tr>
</thead>
</table>

| Congruent: |

Behavioral Congruency

Incongruent Congruent
Chapter 7 - 25

Congruency and Integration

- **ReservedRoom**
- **OccupiedRoom**

Congruent but not integrated

Chapter 7 - 26

Integrated But Not Congruent

- **Missing Generalization** (Room)
- **Missing Specializations** (CurrentGuest, FutureGuest)

Chapter 7 - 27

Overstatement

- ** Explicitly Defined but not Common**

Chapter 7 - 28

Overstatement Resolution

- **Add Missing Specializations**

Chapter 7 - 29

Understatement

- **Common but not Explicit**

Chapter 7 - 30

Understatement Resolution

- **Move Explicit Property to Generalization**
Integrated and Congruent